

KNIME Python Script (Labs) API

This document lists the API of the module knime_io that functions as the main contact point between KNIME
and Python in the KNIME Python Script (Labs) node [https://docs.knime.com/latest/python_installation_guide/index.html#_introduction_2].
Please refer to the KNIME Python Integration Guide [https://docs.knime.com/latest/python_installation_guide/index.html] for more details on how to set up and use the node.

Contents

Inputs and outputs

These properties can be used to retrieve data from or pass data back to KNIME Analytics Platform.
The length of the input and output lists depends on the number of input and output ports of the node.

Example:
If you have a Python Script (Labs) node configured with two input tables and one input object, you can
access the two tables via knime_io.input_tables[0] and knime_io.input_tables[1], and the input object
via knime_io.input_objects[0].

	
knime_io.flow_variables: Dict[str, Any] = {}

	A dictionary of flow variables provided by the KNIME workflow.
New flow variables can be added to the output of the node by adding them to the dictionary.
Supported flow variable types are numbers, strings, booleans and lists thereof.

	
knime_io.input_objects: List = <knime_table._FixedSizeListView object>

	A list of input objects of this script node using zero-based indices. This list has a fixed size, which is determined
by the number of input object ports configured for this node. Input objects are Python objects that are passed in from
another Python script node’s``output_object`` port. This can, for instance, be used to pass trained models between
Python nodes. If no input is given, the list exists but is empty.

	
knime_io.input_tables: List[ReadTable] = <knime_table._FixedSizeListView object>

	The input tables of this script node. This list has a fixed size, which is determined by the number of input table
ports configured for this node. Tables are available in the same order as the port connectors are displayed
alongside the node (from top to bottom), using zero-based indexing. If no input is given, the
list exists but is empty.

	
knime_io.output_images: List = <knime_table._FixedSizeListView object>

	The output images of this script node. This list has a fixed size, which is determined by the number of output images
configured for this node. The value passed to the output port should be an array of bytes encoding an
SVG or PNG image.

Example:

data = knime_io.input_tables[0].to_pandas()
buffer = io.BytesIO()

pyplot.figure()
pyplot.plot('x', 'y', data=data)
pyplot.savefig(buffer, format='svg')

knime_io.output_images[0] = buffer.getvalue()

	
knime_io.output_objects: List = <knime_table._FixedSizeListView object>

	The output objects of this script node. This list has a fixed size, which is determined by the number of output object
ports configured for this node. Each output object can be an arbitrary Python object as long as it can be pickled.
Use this to, for example, pass a trained model to another Python script node.

Example:

model = torchvision.models.resnet18()
...
train/finetune model
...
knime_io.output_objects[0] = model

	
knime_io.output_tables: List[WriteTable] = <knime_table._FixedSizeListView object>

	The output tables of this script node. This list has a fixed size, which is determined by the number of output table
ports configured for this node. You should assign a WriteTable or BatchWriteTable to each output port of this node.
See the factory methods knime_io.write_table() and knime_io.batch_write_table() below.

Example:

knime_io.output_tables[0] = knime_io.write_table(my_pandas_df)

Factory methods

Use these methods to fill the knime_io.output_tables.

	
knime_io.batch_write_table() → BatchWriteTable

	Factory method to create an empty BatchWriteTable that can be filled sequentially batch by batch (see Example).

Example:

table = knime_io.batch_write_table()
table.append(df_1)
table.append(df_2)
knime_io.output_tables[0] = table

	
knime_io.write_table(data: Union[ReadTable, pandas.DataFrame, pyarrow.Table], sentinel: Optional[Union[str, int]] = None) → WriteTable

	Factory method to create a WriteTable given a pandas.DataFrame or a pyarrow.Table.
If the input is a pyarrow.Table, its first column must contain unique row identifiers of type ‘string’.

Example:

knime_io.output_tables[0] = knime_io.write_table(my_pandas_df, sentinel="min")

	Parameters

	
	data – A ReadTable, pandas.DataFrame or a pyarrow.Table

	sentinel – Interpret the following values in integral columns as missing value:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	a special integer value that should be interpreted as missing value

Classes

	
class knime_table.Batch

	A batch is a part of a table containing data. A batch should always fit into system memory,
thus all methods accessing the data will be processed immediately and synchronously.

It can be sliced before the data is accessed as pandas.DataFrame or pyarrow.RecordBatch.

	
__getitem__(slicing: Union[slice, Tuple[slice, Union[slice, List[int], List[str]]]]) → SlicedDataView

	Creates a view of this batch by slicing specific rows and columns. The slicing syntax is similar to
that of numpy arrays, but columns can also be addressed as index lists or via a list of column names.

	Parameters

	
	row_slice – A slice object describing which rows to use.

	column_slice – Optional. A slice object, a list of column indices, or a list of column names.

	Returns

	A SlicedDataView that can be converted to pandas or pyarrow.

Example:

full_batch = batch[:] # Slice/Get the full batch

Slicing works for rows and columns. Column slices can be defined with int's or the column names
row_sliced_batch = batch[:100] # Get first 100 rows of the batch
column_sliced_batch = batch[:, ["name", "age"]] # Get all rows of the columns "name" and "age"
row_and_column_sliced_batch = batch[:100, 1:5] # Get the first 100 rows of columns 1,2,3,4

The resulting`sliced_batches` cannot be sliced further. But they can be converted to pandas or pyarrow.

	
abstract property column_names: Tuple[str, ...]

	Returns the list of column names.

	
abstract property num_columns: int

	Returns the number of columns in the table.

	
abstract property num_rows: int

	Returns the number of rows in the table.

If the table is not completely available yet because batches are still appended to it,
querying the number of rows blocks until all data is available.

	
property shape: Tuple[int, int]

	Returns a tuple in the form (numRows, numColumns) representing the shape of this table.

If the table is not completely available yet because batches are still appended to it,
querying the shape blocks until all data is available.

	
abstract to_pandas(sentinel: Optional[Union[str, int]] = None) → pandas.DataFrame

	Access the batch or table as a pandas.DataFrame.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	Raises

	IndexError – If rows or columns were requested outside of the available shape

	
abstract to_pyarrow(sentinel: Optional[Union[str, int]] = None) → Union[pyarrow.RecordBatch, pyarrow.Table]

	Access this batch or table as a pyarrow.RecordBatch or pyarrow.table. The returned
type depends on the type of the underlying object. When called on a ReadTable,
returns a pyarrow.Table.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	Raises

	IndexError – If rows or columns were requested outside of the available shape

	
class knime_table.ReadTable

	A KNIME ReadTable provides access to the data provided from KNIME, either in full (must fit into memory)
or split into row-wise batches.

	
__getitem__(slicing: Union[slice, Tuple[slice, Union[slice, List[int], List[str]]]]) → SlicedDataView

	Creates a view of this ReadTable by slicing rows and columns. The slicing syntax is similar to that of numpy arrays,
but columns can also be addressed as index lists or via a list of column names.

The returned sliced_table cannot be sliced further. But they can be converted to pandas or pyarrow.

	Parameters

	
	row_slice – A slice object describing which rows to use.

	column_slice – Optional. A slice object, a list of column indices, or a list of column names.

	Returns

	a SlicedDataView that can be converted to pandas or pyarrow.

Example:

row_sliced_table = table[:100] # Get the first 100 rows
column_sliced_table = table[:, ["name", "age"]] # Get all rows of the columns "name" and "age"
row_and_column_sliced_table = table[:100, 1:5] # Get the first 100 rows of columns 1,2,3,4

df = row_and_column_sliced_table.to_pandas()

	
__len__() → int

	Returns the number of batches of this table

	
abstract batches() → Iterator[Batch]

	Returns an generator for the batches in this table. If the generator is advanced to a batch
that is not available yet, it will block until the data is present.
len(my_read_table) gives the static amount of batches within the table, which is not updated.

Example:

processed_table = knime_io.batch_write_table()
for batch in knime_io.input_tables[0].batches():
 input_batch = batch.to_pandas()
 # process the batch
 processed_table.append(input_batch)

	
abstract property column_names: Tuple[str, ...]

	Returns the list of column names.

	
abstract property num_batches: int

	Returns the number of batches in this table.

If the table is not completely available yet because batches are still appended to it,
querying the number of batches blocks until all data is available.

	
abstract property num_columns: int

	Returns the number of columns in the table.

	
abstract property num_rows: int

	Returns the number of rows in the table.

If the table is not completely available yet because batches are still appended to it,
querying the number of rows blocks until all data is available.

	
property shape: Tuple[int, int]

	Returns a tuple in the form (numRows, numColumns) representing the shape of this table.

If the table is not completely available yet because batches are still appended to it,
querying the shape blocks until all data is available.

	
abstract to_pandas(sentinel: Optional[Union[str, int]] = None) → pandas.DataFrame

	Access the batch or table as a pandas.DataFrame.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	Raises

	IndexError – If rows or columns were requested outside of the available shape

	
abstract to_pyarrow(sentinel: Optional[Union[str, int]] = None) → Union[pyarrow.RecordBatch, pyarrow.Table]

	Access this batch or table as a pyarrow.RecordBatch or pyarrow.table. The returned
type depends on the type of the underlying object. When called on a ReadTable,
returns a pyarrow.Table.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	Raises

	IndexError – If rows or columns were requested outside of the available shape

	
class knime_table.WriteTable

	A table that can be filled as a whole.

	
abstract property column_names: Tuple[str, ...]

	Returns the list of column names.

	
abstract property num_batches: int

	Returns the number of batches in this table.

If the table is not completely available yet because batches are still appended to it,
querying the number of batches blocks until all data is available.

	
abstract property num_columns: int

	Returns the number of columns in the table.

	
abstract property num_rows: int

	Returns the number of rows in the table.

If the table is not completely available yet because batches are still appended to it,
querying the number of rows blocks until all data is available.

	
property shape: Tuple[int, int]

	Returns a tuple in the form (numRows, numColumns) representing the shape of this table.

If the table is not completely available yet because batches are still appended to it,
querying the shape blocks until all data is available.

	
class knime_table.BatchWriteTable

	A table that can be filled batch by batch.

	
abstract append(data: Union[Batch, pandas.DataFrame, pyarrow.RecordBatch], sentinel: Optional[Union[str, int]] = None)

	Appends a batch with the given data to the end of this table. The number of columns, as well as their
data types, must match that of the previous batches in this table.
Note that this cannot take a pyarrow.Table as input. With pyarrow, it can only process batches, which
can be created as follows from some input table.

Example:

processed_table = knime_io.batch_write_table()
for batch in knime_io.input_tables[0].batches():
 input_batch = batch.to_pandas()
 # process the batch
 processed_table.append(input_batch)

	Parameters

	
	data – A batch, a pandas.DataFrame or a pyarrow.RecordBatch

	sentinel – Only if data is a pandas.DataFrame or pyarrow.RecordBatch.
Interpret the following values in integral columns as missing value:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	a special integer value that should be interpreted as missing value

	Raises

	ValueError – If the new batch does not have the same columns as previous batches in this Writetable.

	
abstract property column_names: Tuple[str, ...]

	Returns the list of column names.

	
static create() → BatchWriteTable

	Create an empty BatchWriteTable

	
abstract property num_batches: int

	Returns the number of batches in this table.

If the table is not completely available yet because batches are still appended to it,
querying the number of batches blocks until all data is available.

	
abstract property num_columns: int

	Returns the number of columns in the table.

	
abstract property num_rows: int

	Returns the number of rows in the table.

If the table is not completely available yet because batches are still appended to it,
querying the number of rows blocks until all data is available.

	
property shape: Tuple[int, int]

	Returns a tuple in the form (numRows, numColumns) representing the shape of this table.

If the table is not completely available yet because batches are still appended to it,
querying the shape blocks until all data is available.

Python Extension Development

Nodes

These classes can be used by developers to implement their own Python nodes for KNIME.
For a more detailed description see the Pure Python Node Extensions Guide [https://docs.knime.com/latest/pure_python_node_extensions_guide/index.html#introduction]

	
class knime_node.PythonNode

	Extend this class to provide a pure Python based node extension to KNIME Analytics Platform.

Users can either use the decorators @kn.input_table, @kn.input_binary, @kn.output_table, @kn.output_binary,
and @kn.output_view, or populate the input_ports, output_ports, and output_view attributes.

Use the Python logging facilities and its .warning and .error methods to write warnings
and errors to the KNIME console. .info and .debug will only show up in the KNIME console
if the log level in KNIME is configured to show these.

Example:

import logging
import knime_extension as knext

LOGGER = logging.getLogger(__name__)

@knext.node(name="Pure Python Node", node_type=knext.NodeType.LEARNER, icon_path="../icons/icon.png", category="/")
@knext.input_table(name="Input Data", description="We read data from here")
@knext.output_table(name="Output Data", description="Whatever the node has produced")
class TemplateNode(knext.PythonNode):
 # A Python node has a description.

 def configure(self, configure_context, table_schema):
 LOGGER.info(f"Configuring node")
 return table_schema

 def execute(self, exec_context, table):
 return table

	
abstract configure(config_context: ConfigurationContext, *inputs)

	Configure this Python node.

	Parameters

	
	config_context – The ConfigurationContext providing KNIME utilities during execution

	*inputs – Each input table spec or binary port spec will be added as parameter,
in the same order that the ports were defined.

	Returns

	Either a single spec, or a tuple or list of specs. The number of specs
must match the number of defined output ports, and they must be returned in this order.

	Raises

	InvalidConfigurationError – If the input configuration does not satisfy this node’s requirements.

	
abstract execute(exec_context: ExecutionContext, *inputs)

	Execute this Python node.

	Parameters

	
	exec_context – The ExecutionContext providing KNIME utilities during execution

	*inputs – Each input table or binary port object will be added as parameter,
in the same order that the ports were defined.
Tables will be provided as a kn.Table, while binary data will be a plain
Python bytes object.

	Returns

	Either a single output object (table or binary), or a tuple or list of objects.
The number of output objects must match the number of defined output ports,
and they must be returned in this order.
Tables must be provided as a kn.Table or kn.BatchOutputTable, while binary data
should be returned as plain Python bytes object.

A node has a type:

	
class knime_node.NodeType(value)

	Defines the different node types that are available for Python based nodes.

	
LEARNER = 'Learner'

	A node learning a model that is typically consumed by a PREDICTOR.

	
MANIPULATOR = 'Manipulator'

	A node that manipulates data.

	
PREDICTOR = 'Predictor'

	A node that predicts something typically using a model provided by a LEARNER.

	
SINK = 'Sink'

	A node consuming data.

	
SOURCE = 'Source'

	A node producing data.

	
VISUALIZER = 'Visualizer'

	A node that visualizes data.

A node’s configure method receives a configuration context that lets you interact with KNIME

	
class knime_node.ConfigurationContext(java_config_ctx, flow_variables)

	The ConfigurationContext provides utilities to communicate with KNIME
during a node’s configure() method.

	
property flow_variables: Dict[str, Any]

	The flow variables coming in from KNIME as a dictionary with string keys.
The dictionary can be edited and supports flow variables of the following types:

	bool

	list(bool)

	float

	list(float)

	int

	list(int)

	str

	list(str)

	
set_warning(message: str) → None

	Sets a warning on the node.

	Parameters

	message – the warning message to display on the node

A node’s execute method receives an execution context that lets you interact with KNIME and
e.g. check whether the user has cancelled the execution of your Python node.

	
class knime_node.ExecutionContext(java_ctx, flow_variables)

	The ExecutionContext provides utilities to communicate with KNIME during a
node’s execute() method.

	
property flow_variables: Dict[str, Any]

	The flow variables coming in from KNIME as a dictionary with string keys.
The dictionary can be edited and supports flow variables of the following types:

	bool

	list(bool)

	float

	list(float)

	int

	list(int)

	str

	list(str)

	
is_canceled() → bool

	Returns true if this node’s execution has been canceled from KNIME.
Nodes can check for this property and return early if the execution does
not need to finish. Raising a RuntimeError in that case is encouraged.

	
set_progress(progress: float, message: Optional[str] = None)

	Set the progress of the execution.

Note that the progress that can be set here is 80% of the total progress
of a node execution. The first and last 10% are reserved for data
transfer and will be set by the framework.

	Parameters

	
	progress – a floating point number between 0.0 and 1.0

	message – an optional message to display in KNIME with the progress

	
set_warning(message: str) → None

	Sets a warning on the node.

	Parameters

	message – the warning message to display on the node

Decorators

These decorators can be used to easily configure your Python node.

	
knime_node.node(name: str, node_type: NodeType, icon_path: str, category: str, after: Optional[str] = None, id: Optional[str] = None) → Callable

	Use this decorator to annotate a PythonNode class or function that creates a PythonNode
instance that should correspond to a node in KNIME.

	
knime_node.input_binary(name: str, description: str, id: str)

	Use this decorator to define a bytes-serialized port object input of a node.

	Parameters

	
	name –

	description –

	id – A unique ID identifying the type of the Port. Only Ports with equal ID
can be connected in KNIME

	
knime_node.input_table(name: str, description: str)

	Use this decorator to define an input port of type “Table” of a node.

	
knime_node.output_binary(name: str, description: str, id: str)

	Use this decorator to define a bytes-serialized port object output of a node.

	Parameters

	
	name –

	description –

	id – A unique ID identifying the type of the Port. Only Ports with equal ID
can be connected in KNIME

	
knime_node.output_table(name: str, description: str)

	Use this decorator to define an output port of type “Table” of a node.

	
knime_node.output_view(name: str, description: str)

	Use this decorator to specify that this node produces a view

Parameters

To add parameterization to your nodes, the configuration dialog can be defined and customized. Each parameter can be
used in the nodes execution by accessing self.param_name. These parameters can be set up by using
the following parameter types. For a more detailed description see
Defining the node’s configuration dialog [https://docs.knime.com/latest/pure_python_node_extensions_guide/index.html#_defining_the_nodes_configuration_dialog].

	
class knime_parameter.IntParameter(label=None, description=None, default_value=0, validator=None, min_value=None, max_value=None)

	Parameter class for primitive integer types.

	
class knime_parameter.DoubleParameter(label=None, description=None, default_value=0.0, validator=None, min_value=None, max_value=None)

	Parameter class for primitive float types.

	
class knime_parameter.BoolParameter(label=None, description=None, default_value=False, validator=None)

	Parameter class for primitive boolean types.

	
class knime_parameter.StringParameter(label=None, description=None, default_value: str = '', enum: Optional[List[str]] = None, validator=None)

	Parameter class for primitive string types.

	
class knime_parameter.ColumnParameter(label=None, description=None, port_index=0, column_filter: Optional[Callable[[Column], bool]] = None, include_row_key=False, include_none_column=False)

	Parameter class for single columns.

	
class knime_parameter.MultiColumnParameter(label=None, description=None, port_index=0, column_filter: Optional[Callable[[Column], bool]] = None)

	Parameter class for multiple columns.

Validation

While each parameter type listed above has default type validation (eg checking if the IntParameter contains only Integers),
they also support custom validation via a property-like decorator notation. For instance, this can be used to verify that
the parameter value matches a certain criteria (see example below). The validator should be placed below the definition of
the corresponding parameter.

	
class knime_parameter.IntParameter(label=None, description=None, default_value=0, validator=None, min_value=None, max_value=None)

	Parameter class for primitive integer types.

	
validator(func)

	To be used as a decorator for setting a validator function for a parameter.
Note that ‘func’ will be encapsulated in ‘_validator’ and will not be available in the namespace of the class.

Example:

@knext.node(args)
class MyNode:
 num_repetitions = knext.IntParameter(
 label="Number of repetitions",
 description="How often to repeat an action",
 default_value=42
)
 @num_repetitions.validator
 def validate_reps(value):
 if value > 100:
 raise ValueError("Too many repetitions!")

 def configure(args):
 pass

 def execute(args):
 pass

Parameter Groups

Additionally these parameters can be combined in parameter_groups. These groups are visualized as sections in the
configuration dialog. Another benefit of defining parameter groups is the ability to provide group validation.
As opposed to only being able to validate a single value when attaching a validator to a parameter, group validators
have access to the values of all parameters contained in the group, allowing for more complex validation routines.

	
knime_parameter.parameter_group(label: str)

	Used for injecting descriptor protocol methods into a custom parameter group class.
“obj” in this context is the parameterized object instance or a parameter group instance.

Group validators need to raise an exception if a values-based condition is violated, where values is a dictionary
of parameter names and values.
Group validators can be set using either of the following methods:

	By implementing the “validate(self, values)” method inside the class definition of the group.

Example:

def validate(self, values):
 assert values['first_param'] + values['second_param'] < 100

	By using the “@group_name.validator” decorator notation inside the class definition of the “parent” of the group.
The decorator has an optional ‘override’ parameter, set to True by default, which overrides the “validate” method.
If ‘override’ is set to False, the “validate” method, if defined, will be called first.

Example:

@hyperparameters.validator(override=False)
def validate_hyperparams(values):
 assert values['first_param'] + values['second_param'] < 100

Example:

@knext.parameter_group(label="My Settings")
class MySettings:
 name = knext.StringParameter("Name", "The name of the person", "Bario")
 num_repetitions = knext.IntParameter("NumReps", "How often do we repeat?", 1, min_value=1)
 @num_repetitions.validator
 def reps_validator(value):
 if value == 2:
 raise ValueError("I don't like the number 2")

@knext.node(args)
class MyNodeWithSettings:
 settings = MySettings()
 def configure(args):
 pass

 def execute(args):
 pass

Tables

Table and Schema are the two classes that are used to communicate tabular data (Table) during execute,
or the table structure (Schema) in configure between Python and KNIME.

	
class knime_node.Table

	This class serves as public API to create KNIME tables either from pandas or pyarrow.
These tables can than be sent back to KNIME.
This class has to be instantiated by calling either from_pyarrow() or
from_pandas()

	
__getitem__(slicing: Union[slice, List[int], List[str], Tuple[Union[slice, List[int], List[str]], slice]]) → _TabularView

	Creates a view of this Table by slicing rows and columns. The slicing syntax is similar to that of numpy arrays,
but columns can also be addressed as index lists or via a list of column names.

The syntax is [column_slice, row_slice]. Note that this is the exact opposite order than in the Python Script
(Labs) node’s ReadTable.

	Parameters

	
	column_slice – A column index, a column name, a slice object, a list of column indices, or a list of column names.

	row_slice – Optional: A slice object describing which rows to use.

	Returns

	A _TabularView representing a slice of the original Table

Example:

row_sliced_table = table[:, :100] # Get the first 100 rows
column_sliced_table = table[["name", "age"]] # Get all rows of the columns "name" and "age"
row_and_column_sliced_table = table[1:5, :100] # Get the first 100 rows of columns 1,2,3,4

	
static from_pandas(data: pandas.DataFrame, sentinel: Optional[Union[str, int]] = None)

	Factory method to create a Table given a pandas.DataFrame.
The index of the data frame will be used as RowKey by KNIME.

Example:

Table.from_pandas(my_pandas_df, sentinel="min")

	Parameters

	
	data – A pandas.DataFrame

	sentinel – Interpret the following values in integral columns as missing value:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	a special integer value that should be interpreted as missing value

	
static from_pyarrow(data: pyarrow.Table, sentinel: Optional[Union[str, int]] = None)

	Factory method to create a Table given a pyarrow.Table.
The first column of the pyarrow.Table must contain unique row identifiers of type ‘string’.

Example:

Table.from_pyarrow(my_pyarrow_table, sentinel="min")

	Parameters

	
	data – A pyarrow.Table

	sentinel – Interpret the following values in integral columns as missing value:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	a special integer value that should be interpreted as missing value

	
abstract property schema: Schema

	The schema of this table, containing column names, types, and potentially metadata

	
to_batches() → Iterator[Table]

	Returns a generator over the batches in this table. A batch is part of the table
with all columns, but only a subset of the rows. A batch should always fit into
memory (max size currently 64mb). The table being passed to execute() is already
present in batches, so accessing the data this way is very efficient.

Example:

output_table = BatchOutputTable.create()
for batch in my_table.to_batches():
 input_batch = batch.to_pandas()
 # process the batch
 output_table.append(Table.from_pandas(input_batch))

	
to_pandas(sentinel: Optional[Union[str, int]] = None) → pandas.DataFrame

	Access this table as a pandas.DataFrame.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	
to_pyarrow(sentinel: Optional[Union[str, int]] = None) → pyarrow.Table

	Access this table as a pyarrow.Table.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	
class knime_node.BatchOutputTable

	An output table generated by combining smaller tables (also called batches).

Does not provide means to continue to work with the data but is meant to be used
as a return value of a Node’s execute() method.

	
abstract append()

	Append a batch to this output table

	
static create()

	Create an empty BatchOutputTable

	
static from_batches(generator)

	Create output table where each batch is provided by a generator

	
abstract property num_batches: int

	The number of batches written to this output table

	
class knime_schema.Schema(ktypes: List[KnimeType], names: List[str], metadata: Optional[List] = None)

	A schema defines the data types and names of the columns inside a table.
Additionally, it can hold metadata for the individual columns.

	
__getitem__(slicing: Union[slice, List[int], List[str]]) → _ColumnarView

	Creates a view of this Table or Schema by slicing columns. The slicing syntax is similar to that of numpy arrays,
but columns can also be addressed as index lists or via a list of column names.

	Parameters

	column_slice – A column index, a column name, a slice object, a list of column indices, or a list of column names.
For single indices, the view will create a “Column” object. For slices or lists of indices,
a new Schema will be returned.

	Returns

	A _ColumnarView representing a slice of the original Schema or Table.

Examples:

Get columns 1,2,3,4:
sliced_schema = schema[1:5]

Get the columns “name” and “age”:
sliced_schema = schema[["name", "age"]]

	
property column_names: List[str]

	Return the list of column names

	
classmethod from_columns(columns: Union[Sequence[Column], Column])

	Create a schema from a single column or a list of columns

	
classmethod from_knime_dict(table_schema: dict) → Schema

	Construct a Schema from a dict that was retrieved from KNIME in JSON encoded form
as the input to a node’s configure() method.

KNIME provides table information with a RowKey column at the beginning, which we drop before
returning the created schema.

	
classmethod from_types(ktypes: List[KnimeType], names: List[str], metadata: Optional[List] = None)

	Create a schema from a list of column data types, names and metadata

	
property num_columns

	The number of columns in this schema

	
to_knime_dict() → Dict

	Convert this Schema into dict which can then be JSON encoded and sent to KNIME
as result of a node’s configure() method.

Because KNIME expects a row key column as first column of the schema, but we don’t
include this in the KNIME Python table schema, we insert a row key column here.

	Raises

	RuntimeError – if duplicate column names are detected

	
class knime_schema.Column(ktype: KnimeType, name: str, metadata=None)

	A column inside a table schema consists of the knime datatype, a column name
and optional metadata.

	
__init__(ktype: KnimeType, name: str, metadata=None)

	Construct a Column from type, name and optional metadata.

	Parameters

	
	ktype – The knime type of the column

	name – The name of the column. May not be empty.

	Raises

	
	TypeError – if the type is no KNIME type

	ValueError – if the name is empty

Data Types

These are helper functions to create KNIME compatible datatypes. For instance, if a new column is created.

	
knime_schema.int32()

	Create a KNIME integer type with 32 bits

	
knime_schema.int64()

	Create a KNIME integer type with 64 bits

	
knime_schema.double()

	Create a KNIME floating point type with double precision (64 bits)

	
knime_schema.bool_()

	Create a KNIME boolean type

	
knime_schema.blob(dict_encoding_key_type: Optional[DictEncodingKeyType] = None)

	Create a KNIME blob type for binary data of variable length

	Parameters

	dict_encoding_key_type – The key type to use for dictionary encoding. If this is
None (the default), no dictionary encoding will be used.
Dictionary encoding helps to reduce storage space and read/write
performance for columns with repeating values such as categorical data.

	
knime_schema.list_(inner_type: KnimeType)

	Create a KNIME type that is a list of the given inner types

	Parameters

	inner_type – The type of the elements in the list. Must be a KnimeType

	
knime_schema.struct(*inner_types)

	Create a KNIME structured data type where each given argument represents
a field of the struct.

	Parameters

	inner_types – The argument list of this method defines the fields
in this structured data type. Each inner type must be a
KNIME type

	
knime_schema.logical(value_type)

	Create a KNIME logical data type of the given Python value type.

	Parameters

	value_type – The type of the values inside this column. A knime_types.PythonValueFactory
must be registered for this type.

	Raises

	TypeError – if no PythonValueFactory has been registered for this value type
 with knime_types.register_python_value_factory

Contents

Inputs and outputs

These properties can be used to retrieve data from or pass data back to KNIME Analytics Platform.
The length of the input and output lists depends on the number of input and output ports of the node.

Example:
If you have a Python Script (Labs) node configured with two input tables and one input object, you can
access the two tables via knime_io.input_tables[0] and knime_io.input_tables[1], and the input object
via knime_io.input_objects[0].

	
knime_io.flow_variables: Dict[str, Any] = {}

	A dictionary of flow variables provided by the KNIME workflow.
New flow variables can be added to the output of the node by adding them to the dictionary.
Supported flow variable types are numbers, strings, booleans and lists thereof.

	
knime_io.input_objects: List = <knime_table._FixedSizeListView object>

	A list of input objects of this script node using zero-based indices. This list has a fixed size, which is determined
by the number of input object ports configured for this node. Input objects are Python objects that are passed in from
another Python script node’s``output_object`` port. This can, for instance, be used to pass trained models between
Python nodes. If no input is given, the list exists but is empty.

	
knime_io.input_tables: List[ReadTable] = <knime_table._FixedSizeListView object>

	The input tables of this script node. This list has a fixed size, which is determined by the number of input table
ports configured for this node. Tables are available in the same order as the port connectors are displayed
alongside the node (from top to bottom), using zero-based indexing. If no input is given, the
list exists but is empty.

	
knime_io.output_images: List = <knime_table._FixedSizeListView object>

	The output images of this script node. This list has a fixed size, which is determined by the number of output images
configured for this node. The value passed to the output port should be an array of bytes encoding an
SVG or PNG image.

Example:

data = knime_io.input_tables[0].to_pandas()
buffer = io.BytesIO()

pyplot.figure()
pyplot.plot('x', 'y', data=data)
pyplot.savefig(buffer, format='svg')

knime_io.output_images[0] = buffer.getvalue()

	
knime_io.output_objects: List = <knime_table._FixedSizeListView object>

	The output objects of this script node. This list has a fixed size, which is determined by the number of output object
ports configured for this node. Each output object can be an arbitrary Python object as long as it can be pickled.
Use this to, for example, pass a trained model to another Python script node.

Example:

model = torchvision.models.resnet18()
...
train/finetune model
...
knime_io.output_objects[0] = model

	
knime_io.output_tables: List[WriteTable] = <knime_table._FixedSizeListView object>

	The output tables of this script node. This list has a fixed size, which is determined by the number of output table
ports configured for this node. You should assign a WriteTable or BatchWriteTable to each output port of this node.
See the factory methods knime_io.write_table() and knime_io.batch_write_table() below.

Example:

knime_io.output_tables[0] = knime_io.write_table(my_pandas_df)

Factory methods

Use these methods to fill the knime_io.output_tables.

	
knime_io.batch_write_table() → BatchWriteTable

	Factory method to create an empty BatchWriteTable that can be filled sequentially batch by batch (see Example).

Example:

table = knime_io.batch_write_table()
table.append(df_1)
table.append(df_2)
knime_io.output_tables[0] = table

	
knime_io.write_table(data: Union[ReadTable, pandas.DataFrame, pyarrow.Table], sentinel: Optional[Union[str, int]] = None) → WriteTable

	Factory method to create a WriteTable given a pandas.DataFrame or a pyarrow.Table.
If the input is a pyarrow.Table, its first column must contain unique row identifiers of type ‘string’.

Example:

knime_io.output_tables[0] = knime_io.write_table(my_pandas_df, sentinel="min")

	Parameters

	
	data – A ReadTable, pandas.DataFrame or a pyarrow.Table

	sentinel – Interpret the following values in integral columns as missing value:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	a special integer value that should be interpreted as missing value

Classes

	
class knime_table.Batch

	A batch is a part of a table containing data. A batch should always fit into system memory,
thus all methods accessing the data will be processed immediately and synchronously.

It can be sliced before the data is accessed as pandas.DataFrame or pyarrow.RecordBatch.

	
__getitem__(slicing: Union[slice, Tuple[slice, Union[slice, List[int], List[str]]]]) → SlicedDataView

	Creates a view of this batch by slicing specific rows and columns. The slicing syntax is similar to
that of numpy arrays, but columns can also be addressed as index lists or via a list of column names.

	Parameters

	
	row_slice – A slice object describing which rows to use.

	column_slice – Optional. A slice object, a list of column indices, or a list of column names.

	Returns

	A SlicedDataView that can be converted to pandas or pyarrow.

Example:

full_batch = batch[:] # Slice/Get the full batch

Slicing works for rows and columns. Column slices can be defined with int's or the column names
row_sliced_batch = batch[:100] # Get first 100 rows of the batch
column_sliced_batch = batch[:, ["name", "age"]] # Get all rows of the columns "name" and "age"
row_and_column_sliced_batch = batch[:100, 1:5] # Get the first 100 rows of columns 1,2,3,4

The resulting`sliced_batches` cannot be sliced further. But they can be converted to pandas or pyarrow.

	
abstract property column_names: Tuple[str, ...]

	Returns the list of column names.

	
abstract property num_columns: int

	Returns the number of columns in the table.

	
abstract property num_rows: int

	Returns the number of rows in the table.

If the table is not completely available yet because batches are still appended to it,
querying the number of rows blocks until all data is available.

	
property shape: Tuple[int, int]

	Returns a tuple in the form (numRows, numColumns) representing the shape of this table.

If the table is not completely available yet because batches are still appended to it,
querying the shape blocks until all data is available.

	
abstract to_pandas(sentinel: Optional[Union[str, int]] = None) → pandas.DataFrame

	Access the batch or table as a pandas.DataFrame.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	Raises

	IndexError – If rows or columns were requested outside of the available shape

	
abstract to_pyarrow(sentinel: Optional[Union[str, int]] = None) → Union[pyarrow.RecordBatch, pyarrow.Table]

	Access this batch or table as a pyarrow.RecordBatch or pyarrow.table. The returned
type depends on the type of the underlying object. When called on a ReadTable,
returns a pyarrow.Table.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	Raises

	IndexError – If rows or columns were requested outside of the available shape

	
class knime_table.ReadTable

	A KNIME ReadTable provides access to the data provided from KNIME, either in full (must fit into memory)
or split into row-wise batches.

	
__getitem__(slicing: Union[slice, Tuple[slice, Union[slice, List[int], List[str]]]]) → SlicedDataView

	Creates a view of this ReadTable by slicing rows and columns. The slicing syntax is similar to that of numpy arrays,
but columns can also be addressed as index lists or via a list of column names.

The returned sliced_table cannot be sliced further. But they can be converted to pandas or pyarrow.

	Parameters

	
	row_slice – A slice object describing which rows to use.

	column_slice – Optional. A slice object, a list of column indices, or a list of column names.

	Returns

	a SlicedDataView that can be converted to pandas or pyarrow.

Example:

row_sliced_table = table[:100] # Get the first 100 rows
column_sliced_table = table[:, ["name", "age"]] # Get all rows of the columns "name" and "age"
row_and_column_sliced_table = table[:100, 1:5] # Get the first 100 rows of columns 1,2,3,4

df = row_and_column_sliced_table.to_pandas()

	
__len__() → int

	Returns the number of batches of this table

	
abstract batches() → Iterator[Batch]

	Returns an generator for the batches in this table. If the generator is advanced to a batch
that is not available yet, it will block until the data is present.
len(my_read_table) gives the static amount of batches within the table, which is not updated.

Example:

processed_table = knime_io.batch_write_table()
for batch in knime_io.input_tables[0].batches():
 input_batch = batch.to_pandas()
 # process the batch
 processed_table.append(input_batch)

	
abstract property column_names: Tuple[str, ...]

	Returns the list of column names.

	
abstract property num_batches: int

	Returns the number of batches in this table.

If the table is not completely available yet because batches are still appended to it,
querying the number of batches blocks until all data is available.

	
abstract property num_columns: int

	Returns the number of columns in the table.

	
abstract property num_rows: int

	Returns the number of rows in the table.

If the table is not completely available yet because batches are still appended to it,
querying the number of rows blocks until all data is available.

	
property shape: Tuple[int, int]

	Returns a tuple in the form (numRows, numColumns) representing the shape of this table.

If the table is not completely available yet because batches are still appended to it,
querying the shape blocks until all data is available.

	
abstract to_pandas(sentinel: Optional[Union[str, int]] = None) → pandas.DataFrame

	Access the batch or table as a pandas.DataFrame.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	Raises

	IndexError – If rows or columns were requested outside of the available shape

	
abstract to_pyarrow(sentinel: Optional[Union[str, int]] = None) → Union[pyarrow.RecordBatch, pyarrow.Table]

	Access this batch or table as a pyarrow.RecordBatch or pyarrow.table. The returned
type depends on the type of the underlying object. When called on a ReadTable,
returns a pyarrow.Table.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	Raises

	IndexError – If rows or columns were requested outside of the available shape

	
class knime_table.WriteTable

	A table that can be filled as a whole.

	
abstract property column_names: Tuple[str, ...]

	Returns the list of column names.

	
abstract property num_batches: int

	Returns the number of batches in this table.

If the table is not completely available yet because batches are still appended to it,
querying the number of batches blocks until all data is available.

	
abstract property num_columns: int

	Returns the number of columns in the table.

	
abstract property num_rows: int

	Returns the number of rows in the table.

If the table is not completely available yet because batches are still appended to it,
querying the number of rows blocks until all data is available.

	
property shape: Tuple[int, int]

	Returns a tuple in the form (numRows, numColumns) representing the shape of this table.

If the table is not completely available yet because batches are still appended to it,
querying the shape blocks until all data is available.

	
class knime_table.BatchWriteTable

	A table that can be filled batch by batch.

	
abstract append(data: Union[Batch, pandas.DataFrame, pyarrow.RecordBatch], sentinel: Optional[Union[str, int]] = None)

	Appends a batch with the given data to the end of this table. The number of columns, as well as their
data types, must match that of the previous batches in this table.
Note that this cannot take a pyarrow.Table as input. With pyarrow, it can only process batches, which
can be created as follows from some input table.

Example:

processed_table = knime_io.batch_write_table()
for batch in knime_io.input_tables[0].batches():
 input_batch = batch.to_pandas()
 # process the batch
 processed_table.append(input_batch)

	Parameters

	
	data – A batch, a pandas.DataFrame or a pyarrow.RecordBatch

	sentinel – Only if data is a pandas.DataFrame or pyarrow.RecordBatch.
Interpret the following values in integral columns as missing value:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	a special integer value that should be interpreted as missing value

	Raises

	ValueError – If the new batch does not have the same columns as previous batches in this Writetable.

	
abstract property column_names: Tuple[str, ...]

	Returns the list of column names.

	
static create() → BatchWriteTable

	Create an empty BatchWriteTable

	
abstract property num_batches: int

	Returns the number of batches in this table.

If the table is not completely available yet because batches are still appended to it,
querying the number of batches blocks until all data is available.

	
abstract property num_columns: int

	Returns the number of columns in the table.

	
abstract property num_rows: int

	Returns the number of rows in the table.

If the table is not completely available yet because batches are still appended to it,
querying the number of rows blocks until all data is available.

	
property shape: Tuple[int, int]

	Returns a tuple in the form (numRows, numColumns) representing the shape of this table.

If the table is not completely available yet because batches are still appended to it,
querying the shape blocks until all data is available.

Python Extension Development

Nodes

These classes can be used by developers to implement their own Python nodes for KNIME.
For a more detailed description see the Pure Python Node Extensions Guide [https://docs.knime.com/latest/pure_python_node_extensions_guide/index.html#introduction]

	
class knime_node.PythonNode

	Extend this class to provide a pure Python based node extension to KNIME Analytics Platform.

Users can either use the decorators @kn.input_table, @kn.input_binary, @kn.output_table, @kn.output_binary,
and @kn.output_view, or populate the input_ports, output_ports, and output_view attributes.

Use the Python logging facilities and its .warning and .error methods to write warnings
and errors to the KNIME console. .info and .debug will only show up in the KNIME console
if the log level in KNIME is configured to show these.

Example:

import logging
import knime_extension as knext

LOGGER = logging.getLogger(__name__)

@knext.node(name="Pure Python Node", node_type=knext.NodeType.LEARNER, icon_path="../icons/icon.png", category="/")
@knext.input_table(name="Input Data", description="We read data from here")
@knext.output_table(name="Output Data", description="Whatever the node has produced")
class TemplateNode(knext.PythonNode):
 # A Python node has a description.

 def configure(self, configure_context, table_schema):
 LOGGER.info(f"Configuring node")
 return table_schema

 def execute(self, exec_context, table):
 return table

	
abstract configure(config_context: ConfigurationContext, *inputs)

	Configure this Python node.

	Parameters

	
	config_context – The ConfigurationContext providing KNIME utilities during execution

	*inputs – Each input table spec or binary port spec will be added as parameter,
in the same order that the ports were defined.

	Returns

	Either a single spec, or a tuple or list of specs. The number of specs
must match the number of defined output ports, and they must be returned in this order.

	Raises

	InvalidConfigurationError – If the input configuration does not satisfy this node’s requirements.

	
abstract execute(exec_context: ExecutionContext, *inputs)

	Execute this Python node.

	Parameters

	
	exec_context – The ExecutionContext providing KNIME utilities during execution

	*inputs – Each input table or binary port object will be added as parameter,
in the same order that the ports were defined.
Tables will be provided as a kn.Table, while binary data will be a plain
Python bytes object.

	Returns

	Either a single output object (table or binary), or a tuple or list of objects.
The number of output objects must match the number of defined output ports,
and they must be returned in this order.
Tables must be provided as a kn.Table or kn.BatchOutputTable, while binary data
should be returned as plain Python bytes object.

A node has a type:

	
class knime_node.NodeType(value)

	Defines the different node types that are available for Python based nodes.

	
LEARNER = 'Learner'

	A node learning a model that is typically consumed by a PREDICTOR.

	
MANIPULATOR = 'Manipulator'

	A node that manipulates data.

	
PREDICTOR = 'Predictor'

	A node that predicts something typically using a model provided by a LEARNER.

	
SINK = 'Sink'

	A node consuming data.

	
SOURCE = 'Source'

	A node producing data.

	
VISUALIZER = 'Visualizer'

	A node that visualizes data.

A node’s configure method receives a configuration context that lets you interact with KNIME

	
class knime_node.ConfigurationContext(java_config_ctx, flow_variables)

	The ConfigurationContext provides utilities to communicate with KNIME
during a node’s configure() method.

	
property flow_variables: Dict[str, Any]

	The flow variables coming in from KNIME as a dictionary with string keys.
The dictionary can be edited and supports flow variables of the following types:

	bool

	list(bool)

	float

	list(float)

	int

	list(int)

	str

	list(str)

	
set_warning(message: str) → None

	Sets a warning on the node.

	Parameters

	message – the warning message to display on the node

A node’s execute method receives an execution context that lets you interact with KNIME and
e.g. check whether the user has cancelled the execution of your Python node.

	
class knime_node.ExecutionContext(java_ctx, flow_variables)

	The ExecutionContext provides utilities to communicate with KNIME during a
node’s execute() method.

	
property flow_variables: Dict[str, Any]

	The flow variables coming in from KNIME as a dictionary with string keys.
The dictionary can be edited and supports flow variables of the following types:

	bool

	list(bool)

	float

	list(float)

	int

	list(int)

	str

	list(str)

	
is_canceled() → bool

	Returns true if this node’s execution has been canceled from KNIME.
Nodes can check for this property and return early if the execution does
not need to finish. Raising a RuntimeError in that case is encouraged.

	
set_progress(progress: float, message: Optional[str] = None)

	Set the progress of the execution.

Note that the progress that can be set here is 80% of the total progress
of a node execution. The first and last 10% are reserved for data
transfer and will be set by the framework.

	Parameters

	
	progress – a floating point number between 0.0 and 1.0

	message – an optional message to display in KNIME with the progress

	
set_warning(message: str) → None

	Sets a warning on the node.

	Parameters

	message – the warning message to display on the node

Decorators

These decorators can be used to easily configure your Python node.

	
knime_node.node(name: str, node_type: NodeType, icon_path: str, category: str, after: Optional[str] = None, id: Optional[str] = None) → Callable

	Use this decorator to annotate a PythonNode class or function that creates a PythonNode
instance that should correspond to a node in KNIME.

	
knime_node.input_binary(name: str, description: str, id: str)

	Use this decorator to define a bytes-serialized port object input of a node.

	Parameters

	
	name –

	description –

	id – A unique ID identifying the type of the Port. Only Ports with equal ID
can be connected in KNIME

	
knime_node.input_table(name: str, description: str)

	Use this decorator to define an input port of type “Table” of a node.

	
knime_node.output_binary(name: str, description: str, id: str)

	Use this decorator to define a bytes-serialized port object output of a node.

	Parameters

	
	name –

	description –

	id – A unique ID identifying the type of the Port. Only Ports with equal ID
can be connected in KNIME

	
knime_node.output_table(name: str, description: str)

	Use this decorator to define an output port of type “Table” of a node.

	
knime_node.output_view(name: str, description: str)

	Use this decorator to specify that this node produces a view

Parameters

To add parameterization to your nodes, the configuration dialog can be defined and customized. Each parameter can be
used in the nodes execution by accessing self.param_name. These parameters can be set up by using
the following parameter types. For a more detailed description see
Defining the node’s configuration dialog [https://docs.knime.com/latest/pure_python_node_extensions_guide/index.html#_defining_the_nodes_configuration_dialog].

	
class knime_parameter.IntParameter(label=None, description=None, default_value=0, validator=None, min_value=None, max_value=None)

	Parameter class for primitive integer types.

	
class knime_parameter.DoubleParameter(label=None, description=None, default_value=0.0, validator=None, min_value=None, max_value=None)

	Parameter class for primitive float types.

	
class knime_parameter.BoolParameter(label=None, description=None, default_value=False, validator=None)

	Parameter class for primitive boolean types.

	
class knime_parameter.StringParameter(label=None, description=None, default_value: str = '', enum: Optional[List[str]] = None, validator=None)

	Parameter class for primitive string types.

	
class knime_parameter.ColumnParameter(label=None, description=None, port_index=0, column_filter: Optional[Callable[[Column], bool]] = None, include_row_key=False, include_none_column=False)

	Parameter class for single columns.

	
class knime_parameter.MultiColumnParameter(label=None, description=None, port_index=0, column_filter: Optional[Callable[[Column], bool]] = None)

	Parameter class for multiple columns.

Validation

While each parameter type listed above has default type validation (eg checking if the IntParameter contains only Integers),
they also support custom validation via a property-like decorator notation. For instance, this can be used to verify that
the parameter value matches a certain criteria (see example below). The validator should be placed below the definition of
the corresponding parameter.

	
class knime_parameter.IntParameter(label=None, description=None, default_value=0, validator=None, min_value=None, max_value=None)

	Parameter class for primitive integer types.

	
validator(func)

	To be used as a decorator for setting a validator function for a parameter.
Note that ‘func’ will be encapsulated in ‘_validator’ and will not be available in the namespace of the class.

Example:

@knext.node(args)
class MyNode:
 num_repetitions = knext.IntParameter(
 label="Number of repetitions",
 description="How often to repeat an action",
 default_value=42
)
 @num_repetitions.validator
 def validate_reps(value):
 if value > 100:
 raise ValueError("Too many repetitions!")

 def configure(args):
 pass

 def execute(args):
 pass

Parameter Groups

Additionally these parameters can be combined in parameter_groups. These groups are visualized as sections in the
configuration dialog. Another benefit of defining parameter groups is the ability to provide group validation.
As opposed to only being able to validate a single value when attaching a validator to a parameter, group validators
have access to the values of all parameters contained in the group, allowing for more complex validation routines.

	
knime_parameter.parameter_group(label: str)

	Used for injecting descriptor protocol methods into a custom parameter group class.
“obj” in this context is the parameterized object instance or a parameter group instance.

Group validators need to raise an exception if a values-based condition is violated, where values is a dictionary
of parameter names and values.
Group validators can be set using either of the following methods:

	By implementing the “validate(self, values)” method inside the class definition of the group.

Example:

def validate(self, values):
 assert values['first_param'] + values['second_param'] < 100

	By using the “@group_name.validator” decorator notation inside the class definition of the “parent” of the group.
The decorator has an optional ‘override’ parameter, set to True by default, which overrides the “validate” method.
If ‘override’ is set to False, the “validate” method, if defined, will be called first.

Example:

@hyperparameters.validator(override=False)
def validate_hyperparams(values):
 assert values['first_param'] + values['second_param'] < 100

Example:

@knext.parameter_group(label="My Settings")
class MySettings:
 name = knext.StringParameter("Name", "The name of the person", "Bario")
 num_repetitions = knext.IntParameter("NumReps", "How often do we repeat?", 1, min_value=1)
 @num_repetitions.validator
 def reps_validator(value):
 if value == 2:
 raise ValueError("I don't like the number 2")

@knext.node(args)
class MyNodeWithSettings:
 settings = MySettings()
 def configure(args):
 pass

 def execute(args):
 pass

Tables

Table and Schema are the two classes that are used to communicate tabular data (Table) during execute,
or the table structure (Schema) in configure between Python and KNIME.

	
class knime_node.Table

	This class serves as public API to create KNIME tables either from pandas or pyarrow.
These tables can than be sent back to KNIME.
This class has to be instantiated by calling either from_pyarrow() or
from_pandas()

	
__getitem__(slicing: Union[slice, List[int], List[str], Tuple[Union[slice, List[int], List[str]], slice]]) → _TabularView

	Creates a view of this Table by slicing rows and columns. The slicing syntax is similar to that of numpy arrays,
but columns can also be addressed as index lists or via a list of column names.

The syntax is [column_slice, row_slice]. Note that this is the exact opposite order than in the Python Script
(Labs) node’s ReadTable.

	Parameters

	
	column_slice – A column index, a column name, a slice object, a list of column indices, or a list of column names.

	row_slice – Optional: A slice object describing which rows to use.

	Returns

	A _TabularView representing a slice of the original Table

Example:

row_sliced_table = table[:, :100] # Get the first 100 rows
column_sliced_table = table[["name", "age"]] # Get all rows of the columns "name" and "age"
row_and_column_sliced_table = table[1:5, :100] # Get the first 100 rows of columns 1,2,3,4

	
static from_pandas(data: pandas.DataFrame, sentinel: Optional[Union[str, int]] = None)

	Factory method to create a Table given a pandas.DataFrame.
The index of the data frame will be used as RowKey by KNIME.

Example:

Table.from_pandas(my_pandas_df, sentinel="min")

	Parameters

	
	data – A pandas.DataFrame

	sentinel – Interpret the following values in integral columns as missing value:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	a special integer value that should be interpreted as missing value

	
static from_pyarrow(data: pyarrow.Table, sentinel: Optional[Union[str, int]] = None)

	Factory method to create a Table given a pyarrow.Table.
The first column of the pyarrow.Table must contain unique row identifiers of type ‘string’.

Example:

Table.from_pyarrow(my_pyarrow_table, sentinel="min")

	Parameters

	
	data – A pyarrow.Table

	sentinel – Interpret the following values in integral columns as missing value:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	a special integer value that should be interpreted as missing value

	
abstract property schema: Schema

	The schema of this table, containing column names, types, and potentially metadata

	
to_batches() → Iterator[Table]

	Returns a generator over the batches in this table. A batch is part of the table
with all columns, but only a subset of the rows. A batch should always fit into
memory (max size currently 64mb). The table being passed to execute() is already
present in batches, so accessing the data this way is very efficient.

Example:

output_table = BatchOutputTable.create()
for batch in my_table.to_batches():
 input_batch = batch.to_pandas()
 # process the batch
 output_table.append(Table.from_pandas(input_batch))

	
to_pandas(sentinel: Optional[Union[str, int]] = None) → pandas.DataFrame

	Access this table as a pandas.DataFrame.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	
to_pyarrow(sentinel: Optional[Union[str, int]] = None) → pyarrow.Table

	Access this table as a pyarrow.Table.

	Parameters

	sentinel – Replace missing values in integral columns by the given value, one of:

	"min" min int32 or min int64 depending on the type of the column

	"max" max int32 or max int64 depending on the type of the column

	An integer value that should be inserted for each missing value

	
class knime_node.BatchOutputTable

	An output table generated by combining smaller tables (also called batches).

Does not provide means to continue to work with the data but is meant to be used
as a return value of a Node’s execute() method.

	
abstract append()

	Append a batch to this output table

	
static create()

	Create an empty BatchOutputTable

	
static from_batches(generator)

	Create output table where each batch is provided by a generator

	
abstract property num_batches: int

	The number of batches written to this output table

	
class knime_schema.Schema(ktypes: List[KnimeType], names: List[str], metadata: Optional[List] = None)

	A schema defines the data types and names of the columns inside a table.
Additionally, it can hold metadata for the individual columns.

	
__getitem__(slicing: Union[slice, List[int], List[str]]) → _ColumnarView

	Creates a view of this Table or Schema by slicing columns. The slicing syntax is similar to that of numpy arrays,
but columns can also be addressed as index lists or via a list of column names.

	Parameters

	column_slice – A column index, a column name, a slice object, a list of column indices, or a list of column names.
For single indices, the view will create a “Column” object. For slices or lists of indices,
a new Schema will be returned.

	Returns

	A _ColumnarView representing a slice of the original Schema or Table.

Examples:

Get columns 1,2,3,4:
sliced_schema = schema[1:5]

Get the columns “name” and “age”:
sliced_schema = schema[["name", "age"]]

	
property column_names: List[str]

	Return the list of column names

	
classmethod from_columns(columns: Union[Sequence[Column], Column])

	Create a schema from a single column or a list of columns

	
classmethod from_knime_dict(table_schema: dict) → Schema

	Construct a Schema from a dict that was retrieved from KNIME in JSON encoded form
as the input to a node’s configure() method.

KNIME provides table information with a RowKey column at the beginning, which we drop before
returning the created schema.

	
classmethod from_types(ktypes: List[KnimeType], names: List[str], metadata: Optional[List] = None)

	Create a schema from a list of column data types, names and metadata

	
property num_columns

	The number of columns in this schema

	
to_knime_dict() → Dict

	Convert this Schema into dict which can then be JSON encoded and sent to KNIME
as result of a node’s configure() method.

Because KNIME expects a row key column as first column of the schema, but we don’t
include this in the KNIME Python table schema, we insert a row key column here.

	Raises

	RuntimeError – if duplicate column names are detected

	
class knime_schema.Column(ktype: KnimeType, name: str, metadata=None)

	A column inside a table schema consists of the knime datatype, a column name
and optional metadata.

	
__init__(ktype: KnimeType, name: str, metadata=None)

	Construct a Column from type, name and optional metadata.

	Parameters

	
	ktype – The knime type of the column

	name – The name of the column. May not be empty.

	Raises

	
	TypeError – if the type is no KNIME type

	ValueError – if the name is empty

Data Types

These are helper functions to create KNIME compatible datatypes. For instance, if a new column is created.

	
knime_schema.int32()

	Create a KNIME integer type with 32 bits

	
knime_schema.int64()

	Create a KNIME integer type with 64 bits

	
knime_schema.double()

	Create a KNIME floating point type with double precision (64 bits)

	
knime_schema.bool_()

	Create a KNIME boolean type

	
knime_schema.blob(dict_encoding_key_type: Optional[DictEncodingKeyType] = None)

	Create a KNIME blob type for binary data of variable length

	Parameters

	dict_encoding_key_type – The key type to use for dictionary encoding. If this is
None (the default), no dictionary encoding will be used.
Dictionary encoding helps to reduce storage space and read/write
performance for columns with repeating values such as categorical data.

	
knime_schema.list_(inner_type: KnimeType)

	Create a KNIME type that is a list of the given inner types

	Parameters

	inner_type – The type of the elements in the list. Must be a KnimeType

	
knime_schema.struct(*inner_types)

	Create a KNIME structured data type where each given argument represents
a field of the struct.

	Parameters

	inner_types – The argument list of this method defines the fields
in this structured data type. Each inner type must be a
KNIME type

	
knime_schema.logical(value_type)

	Create a KNIME logical data type of the given Python value type.

	Parameters

	value_type – The type of the values inside this column. A knime_types.PythonValueFactory
must be registered for this type.

	Raises

	TypeError – if no PythonValueFactory has been registered for this value type
 with knime_types.register_python_value_factory

License

Please see below the General Public License (GPL), Version 3,
and the Additional Permissions according to Sec. 7
applying to the files in this folder:

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

Additional permissions under GNU GPL Version 3 Section 7:

KNIME interoperates with ECLIPSE solely via ECLIPSE's plug-in APIs.
Hence, KNIME and ECLIPSE are both independent programs and are not
derived from each other. Should, however, the interpretation of the
GNU GPL Version 3 ("License") under any applicable laws result in
KNIME and ECLIPSE being a combined program, KNIME AG herewith grants
you the additional permission to use and propagate KNIME together with
ECLIPSE with only the license terms in place for ECLIPSE applying to
ECLIPSE and the GNU GPL Version 3 applying for KNIME, provided the
license terms of ECLIPSE themselves allow for the respective use and
propagation of ECLIPSE together with KNIME.

Additional permission relating to nodes for KNIME that extend the Node
Extension (and in particular that are based on subclasses of NodeModel,
NodeDialog, and NodeView) and that only interoperate with KNIME through
standard APIs ("Nodes"):
Nodes are deemed to be separate and independent programs and to not be
covered works. Notwithstanding anything to the contrary in the License,
the License does not apply to Nodes, you are not required to license Nodes
under the License, and you are granted a license to prepare and propagate
Nodes, in each case even if such Nodes are propagated with or for
interoperation with KNIME. The owner of a Node may freely choose the
license terms applicable to such Node, including when such Node is
propagated with or for interoperation with KNIME.

Index

 nav.xhtml

 Table of Contents

 		
 KNIME Python Script (Labs) API

_static/KNIME_Logo.png
Open for Innovation

KNIME

_static/plus.png

_static/file.png

_static/minus.png

